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Big Data Sources: Simulations
• Large multi-terabyte simulation datasets: 1-30 TB
• Cosmology simulations soon 10-100 X bigger
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Big Data Sources: Sensors
• Sloan Digital Sky Survey

• New Mexico telescope: 200 GB/night
• Latest dataset release: 10 TB
• 287 million celestial objects
• SkyServer provides SQL access

• Pan-STARRS

• LSST: Large Synoptic
Survey Telescope (2016)
• 6.4 GB images, 15 TB / night
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Big Data Sources: Commerce

• Wal-Mart

• 267 million items/day, sold at 6,000 stores

• HP building them 4PB data warehouse

• Mine data to:
• Manage supply chain

• Understand market trends

• Formulate pricing strategies
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Our Data-Driven World
• Science

• Astronomy, seismology, genomics, natural languages ...
• Humanities

• Scanned books, historic documents, …
• Commerce

• Corporate sales, stock market transactions, airline traffic, ...
• Entertainment

• Internet images, Hollywood movies, music files, …
• Medicine

• MRI & CT scans, patient records, …
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Why So Much Data?
• We can generate it and get it

• Automation + Internet
• We can keep it

• 1 TB Disk @ $100 (10¢ / GB)
• We can use it

• Scientific breakthroughs
• Business process efficiencies
• Realistic special effects
• Better health care

• Could we do more?
• Apply more computing power to this data
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Oceans of Data, Skinny Pipes
• Analytics at scale are I/O intensive
• Terabytes: easy to store, hard to move

Time to scan 1 TB
Disks MB / s Time

Consumer 40 7.3 hours

Enterprise 125 2.2 hours

Networks MB / s Time

Home Internet < 0.625 > 18.5 days

Gigabit Ethernet < 125 > 2.2 hours

Teragrid Connection < 3,750 > 4.4 minutes
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Data-Intensive System Challenge
• For computation that accesses 100 TB in 10 mins

• Single disk:  2 - 8 GB/min
• Data distributed over 1000+ disks

- Assuming uniform data partitioning
• Compute using 1000+ processors
• Connected by at least gigabit Ethernet

• System Requirements
• Lots of disks
• Lots of processors
• Located in close proximity
• Within reach of fast, local-area network
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Google’s Computing Infrastructure

• System
• Millions processors in clusters of ~2000 processors each
• Commodity parts

- x86 processors, IDE disks, Ethernet communications
- Gain reliability through redundancy & software management

• Partitioned workload
- Data: Web pages, indices distributed across processors
- Function: crawling, index generation, search, document retrieval, 

Ad placement
• A Data-Intensive Scalable Computer (DISC)

• Large-scale computer centered around data
- Collecting, maintaining, indexing, computing

• Similar systems at Microsoft, Yahoo, Facebook, Amazon

Barroso, Dean, Hölzle, “Web Search for a Planet: The Google Cluster Architecture” IEEE Micro 2003
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Challenges of Scale

• Managing thousands of hosts

• Component failures become the steady state

• Distributed resilient apps are hard to write
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MapReduce Programming Model

• Programming abstraction and runtime support
• Scaling up applications
• Make it easy to use thousands of nodes
• Common application pattern

• Input: Large unordered collection of unstructured records
• Process each record
• Group intermediate results
• Process groups

• Scalable distributed “GROUP BY” primitive
• Hadoop open source implementation 
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Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004
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MapReduce
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MapReduce
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MapReduce
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MapReduce

12

Input Split Input Split Input Split Input Split Input Split

Map Map Map MapMap

Reduce ReduceReduce

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


    Data Intensive Scalable Computing for Science
February 2009www.pdl.cmu.edu

MapReduce
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MapReduce
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MapReduce
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MapReduce (cont.)
• Application writer specifies 

• A set of input files
• A pair of functions called Map and Reduce
• Map transforms input records into (km,vm) pairs
• Reduce combines all (km,vm) with same km into (kr,vr)

• Framework
• All phases are distributed among many tasks
• Allocates resources and schedules tasks on the cluster
• Generates splits from input files, one per map task
• Co-location of storage & computation
• Shuffles & sort tuples according to their keys
• Reliability: Handles node and task failures
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MapReduce Example
• Input: multi-TB dataset
• Record: Vector with 3 float32_t values (v0, v1, v2)
• Goal: Plot count vs. value of v1

• Frequency count for the values of v1
• vmin < v1 < vmax

• 1000 buckets

14
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MapReduce Example (cont.)
• Map function takes a single record r=(v0, v1, v2)
Map(r) {
if (r.v1 < v_max && r.v1 > v_min) {
   // Extract desired component v1
   Emit((r.v1-v_min)/bucket_size, 1);
}
}

• Reduce receives groups with the same k.
• Reduce (Key k, Iterator values) {

sum = 0;
while (iterator.next()) {

   sum += iterator.getValue();
}
emit(k*bucket_size+v_min, sum);
}
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HDFS: Hadoop Distributed File System
• Open source counterpart of the Google file system
• Fault tolerant, scalable, distributed storage system
• Stores very large files across a large machine cluster
• Files are divided into uniform sized blocks and distributed 

across cluster nodes
• Blocks are replicated to handle hardware failure
• Corruption detection and recovery: FS-level checksuming
• HDFS exposes block placement:

• Enables moving computation to data

16
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Getting Started
• Goal: Get faculty & students active in DISC
• Hardware: Rent from Amazon

• Elastic Compute Cloud (EC2)
• Generic Linux cycles for $0.10 / hour ($877 / yr)

• Simple Storage Service (S3)
• Network-accessible storage for $0.15 / GB / month ($1800/TB/yr)

• Example: maintain crawled copy of web
 50 TB, 100 processors, 0.5 TB/day refresh ~ $250K / year

• Software
• Hadoop Project

• Open source project providing file system and MapReduce
• Supported and used by Yahoo
• Prototype on single machine, map onto cluster

17
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Rely on Kindness of Others

• Google setting up dedicated cluster for university use
• Loaded with open-source software including Hadoop
• IBM providing additional software support
• NSF administering through the CLUE program

18
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More Sources of Kindness: Yahoo! M45

• Yahoo! is a major supporter of Hadoop
• Yahoo! plans to work with other universities

19
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Beyond the U.S.
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Testbed for system research in DISC systems
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HP, Yahoo and Intel Create Compute Cloud
Stacey Higginbotham, Tuesday, July 29, 2008 at 10:37 AM PT
Comments (8)

Related Stories
  HP Weds Cloud and High-performance Computing
  Intel Friends Facebook to Make x86 Chips Sexy
  Elastra Gets $12M — Is It Amazon’s Enterprise Play?
Powered by Sphere
Updated at the bottom: At long last, Hewlett-Packard is stepping up with an 
answer to cloud computing by inking a partnership with two other big technology 
vendors and three universities to create a cloud computing testbed. Through its R&D 
unit, HP Labs, the computing giant had has teamed up with Intel, Yahoo, the 
Infocomm Development Authority of Singapore (IDA), the University of Illinois at 
Urbana-Champaign, the National Science Foundation (NSF) and the Karlsruhe 
Institute of Technology in Germany.
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M45 Projects

• Targeted web crawling
• Automatic analysis for grading document reading difficulty.
• Language N-gram extraction
• Grammar induction
• Statistical machine translation
• Large-scale graph mining
• Understanding Wikipedia collaboration
• Large-scale scene matching: Retrieve and process images
• Parallel file systems for Hadoop
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Science-related projects
• Earth Science related

• Material ground model generation
• Analysis of simulation-generated wavefields
• Wavefield comparison

• Astrophysics
• Large-scale Halo finding
• Percolation analysis
• N-point correlation functions
• Image analysis and classification

23
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Partition Solve Visualize

Analysis

Ground motion modeling 101

Mesh
generation

Physical
model
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Ground model generation

• Populate an octree spatial structure with ground properties
• Octree has lower query cost (10 - 100X faster)
• Involves creating samples at high spatial resolution (10m)
• Samples are obtained from an external program

- Reads: lat, lon, depth
- Outputs: ground density and wave velocity (r, a, b)

Physical
model

Steve Schlosser, Michael Ryan, Julio López, Ricardo Taborda, Jacobo Bielak, David O’Hallaron.  
“Generating ground models of Southern California”, Supercomputing 2008
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Image credit: Amit Chourasia, Visualization Services, SDSC 
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Goal:
  Sample entire region at 10m resolution

6x104 x 3x104 x 1x104 = 18x1012 sample 
points!

~1 PB of data uncompressed

Approach:
  Reduce early and reduce often

SCEC

600 km
30

0 
km

100 km
deep

Image credit: Amit Chourasia, Visualization Services, SDSC 
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Map/Reduce implementation

Map: Sample entire region at
target resolution

Image credit: Amit Chourasia, Visualization Services, SDSC 

http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


    Data Intensive Scalable Computing for Science
February 2009www.pdl.cmu.edu

Map/Reduce implementation

Map: Sample entire region at
target resolution

Image credit: Amit Chourasia, Visualization Services, SDSC 

Reduce: Coalesce neighbors
with similar characteristics
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Map implementation

0 0 0
16 0 0
32 0 0
48 0 0
80 0 0
…

Input tuples
(line #, string)

Intermediate
tuples

(code, density)

<000, d0>
<001, d1>
<010, d2>
<011, d3>
<100, d4>
<101, d5>
<110, d6>
<111, d7>

…

Map(String key, String value)
   // key: line #
   // value: x, y, z
   for each line:
      generate N samples
        starting at x,y,z
      emit <loc code, density>

4096
34.50020 -120.99779 146.48438
34.49853 -120.99536 146.48438
34.49686 -120.99294 146.48438
34.49520 -120.99051 146.48438
34.49353 -120.98808 146.48438
34.49186 -120.98566 146.48438
34.49019 -120.98323 146.48438
34.48852 -120.98081 146.48438
…

CVM
34.50020 -120.99779    146.48   5000.0   2886.8   2654.5
34.49853 -120.99536    146.48   5000.0   2886.8   2654.5
34.49686 -120.99294    146.48   5000.0   2886.8   2654.5
34.49520 -120.99051    146.48   5000.0   2886.8   2654.5
34.49353 -120.98808    146.48   5000.0   2886.8   2654.5
34.49186 -120.98566    146.48   5000.0   2886.8   2654.5
34.49019 -120.98323    146.48   5000.0   2886.8   2654.5
34.48852 -120.98081    146.48   5000.0   2886.8   2654.5
…

Convert x, y, z coords
to lat/lon/depth tuples

for CVM input

Convert x, y, z coords to
intermediate locational

codes for outputGround characteristic
data: density, Vp, Vs

http://www.pdl.cmu.edu
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Intermediate key manipulation

Intermediate
tuples

(code, density)

<000, d0>
<001, d1>
<010, d2>
<011, d3>
<100, d4>
<101, d5>
<110, d6>
<111, d7>

…

Manipulated
tuples

(code, density)

<000, 000 d0>
<000, 001 d1>
<000, 010 d2>
<000, 011 d3>
<000, 100 d4>
<000, 101 d5>
<000, 110 d6>
<000, 111 d7>

…

Clear 3 low-order bits per 
octree level
 
Naturally gathers neighboring 
tuples together for Reduce

http://www.pdl.cmu.edu
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Reduce implementation

Intermediate
tuples

(code, density)

<000, 000 d0>
<000, 001 d1>
<000, 010 d2>
<000, 011 d3>
<000, 100 d4>
<000, 101 d5>
<000, 110 d6>
<000, 111 d7>

…

Output
(code, density)

Reduce(String k, Iterator value)
   // k: locational code
   // value: sample data
   vector samples = ();
   foreach v in value
      samples.push(v);
   if (tryCoalesce(samples))
      emit <coalesce(samples)>
   else
      emit <samples>

<000 d0>
<001 d1>
<010 d2>
<011 d3>
<100 d4>
<101 d5>
<110 d6>
<111 d7>

…

Are they neighbors?
Yes.

Coalesce
and emit

Are densities equal?
Yes.

Are densities equal?
No.

Just emit

Output
(code, density)

<000, d0>
…

<000, d0>
<001, d1>
<010, d2>
<011, d3>
<100, d4>
<101, d5>
<110, d6>
<111, d7>

…

Run successive
Reduces until
data cannot be

further coalesced

Key = 000

http://www.pdl.cmu.edu
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Harvard
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Harvard

~1 day
on our cluster

50 8-core blades
8GB memory
300GB disk
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SCEC

Several days
on our cluster
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Harvard
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Harvard
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Harvard
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Stack-based coalescing

CVM
0 0 0
16 0 0
32 0 0
48 0 0
80 0 0
…

Input tuples
(line #, string)

Result tuples
(code, density)

<000, d0>
<001, d1>
<010, d2>
<011, d3>
<100, d4>
<101, d5>
<110, d6>
<111, d7>

…

Map(String key, String value)
   // key: line #
   // value: x, y, z
   for each line:
     Fork CVM
      generate N samples
        starting at x,y,z
 Start stack coalescer thread
      if stack coalescer finished
        foreach (stack)
          emit <loc code, density>

4096
34.50020 -120.99779 146.48438
34.49853 -120.99536 146.48438
34.49686 -120.99294 146.48438
34.49520 -120.99051 146.48438
34.49353 -120.98808 146.48438
…

Stack
coalescer

34.50020 -120.99779    146.48   5000.0   2886.8   2654.5
34.49853 -120.99536    146.48   5000.0   2886.8   2654.5
34.49686 -120.99294    146.48   5000.0   2886.8   2654.5
34.49520 -120.99051    146.48   5000.0   2886.8   2654.5
34.49353 -120.98808    146.48   5000.0   2886.8   2654.5
34.49186 -120.98566    146.48   5000.0   2886.8   2654.5
34.49019 -120.98323    146.48   5000.0   2886.8   2654.5
34.48852 -120.98081    146.48   5000.0   2886.8   2654.5
…

That’s it – no Reduce!

http://www.pdl.cmu.edu
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Ground Model Generation Summary 

• Used Hadoop to build a ground model generator
• Hadoop implementation runs in O(days)
• Stack-based Hadoop and C versions run in several hours
• Cost of distributed group-by are not necessary for this app
• Hadoop hides a lot of complexity

http://www.pdl.cmu.edu
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Hadoop: What we’ve learned
• There’s a learning curve:

• Programming: how to plug things together
• How to mix existing legacy code & new
• How to configure Hadoop
• Being good web crawlers, experiential learning

• Dealing with the input: formats, small files, etc.
• Achieved good problem size scaling

… in a short period of time.

39
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MapReduce & Hadoop strengths
• Simple, easy-to-understand programming model
• Good for unstructured data: customized parsing
• Powerful “GROUP BY” primitive

• Unordered input
• Suited for computing statistics, e.g., term frequency

• System - application separation
• Distributed and out-of-core processing
• Resilient failure handling
• Enables co-location of storage and computation

40
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Shortcomings
• Low-level primitive for some application domains

• Need higher-level abstractions
• Constraining pattern: M/S/R, M-only

• What about recursive block transformations?
• Coarse-grained lockstep operations

• No coordination between tasks, no explicit RPC
• Little benefit for ordered data
• Cumbersome multi-dataset operations
• Reading custom data formats

41
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Desiderata for DISC Systems
• Focus on Data

• Terabytes, not tera-FLOPS
• Problem-Centric Programming

• Platform-independent expression of data parallelism
• Interactive Access

• From simple queries to massive computations
• Robust Fault Tolerance

• Component failures are handled as routine events

42
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CS Research Issues
• Applications

• Astroinformatics, language translation, image processing...
• Application Support

• Machine learning over very large data sets
• Web crawling

• Programming
• Programming models to support large-scale computation
• Distributed databases 

• System Design
• Error detection & recovery mechanisms
• Resource scheduling and load balancing
• Distribution and sharing of data across system

43
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Choosing Execution Models
• Message Passing / Shared Memory

• Achieves high performance when everything works well
• Requires careful tuning of programs
• Vulnerable to single points of failure

• Map/Reduce
• Allows for abstract programming model
• More flexible, adaptable, and robust
• Performance limited by disk I/O

• Alternatives?
• Is there some way to combine to get strengths of both?
• Other models such as MSR Dryad.
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Concluding Thoughts
• Need for a new approach to large-scale computing

• Optimized for data-driven applications
• Technology favoring centralized facilities
• Storage capacity & computer power growing faster than 

network and I/O bandwidth
• Industry is catching on quickly

• Large crowd for Hadoop Summit
• Quick adoption by many companies

• University researchers / educators getting involved
• Spans wide range of CS disciplines
• Across multiple institutions
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More Information

Data-Intensive Scalable Computing

http://www.pdl.cmu.edu/DISC
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